A rank-one fitting algorithm for unconstrained optimization problems
نویسندگان
چکیده
منابع مشابه
An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملStructured symmetric rank-one method for unconstrained optimization
In this paper, we investigate a symmetric rank-one (SR1) quasi-Newton (QN) formula in which the Hessian of the objective function has some special structure. Instead of approximating the whole Hessian via the SR1 formula, we consider an approach which only approximates part of the Hessian matrix that is not easily acquired. Although the SR1 update possesses desirable features, it is unstable in...
متن کاملMulti-steps Symmetric Rank-one Update for Unconstrained Optimization
In this paper, we present a generalized Symmetric Rank-one (SR1) method by employing interpolatory polynomials in order to possess a more accurate information from more than one previous step. The basic idea is to incorporate the SR1 update within the framework of multi-step methods. Hence iterates could be interpolated by a curve in such a way that the consecutive points define the curves. How...
متن کاملModified Seeker Optimization Algorithm for Unconstrained Optimization Problems
Seeker optimization algorithm (SOA) is a novel search algorithm based on simulating the act of human searching, which has been shown to be a promising candidate among search algorithms for unconstrained function optimization. In this article we propose a modified seeker optimization algorithm. In order to enhance the performance of SOA, our proposed approach uses two search equations for produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2004
ISSN: 0893-9659
DOI: 10.1016/j.aml.2004.07.009